

ORIGINAL 17 NOV 2006

FORM 2

PATENT ACT 1970

COMPLETE SPECIFICATION

(Section 10)

TITLE

MOBILE PHONE WITH A PLURALITY OF SIMCARDS ALLOCATED TO
DIFFERENT COMMUNICATION NETWORKS.

SOMASUNDARAM RAMKUMAR
OLD NO : 15/2, NEW NO : 28, SOUTH STREET,
TALLAKULAM,
MADURAI-625002,
TAMILNADU.

161/1413/2002
09 NOV 2002

The following specification describes the nature of the invention and the manner in which

it is to be performed.

DESCRIPTION

The invention relates to mobile phone in particular. This invention also relates to simcards incorporated. The object of the invention is a mobile phone is to be incorporated with a provision for a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards, a plurality of headphone/earphone jacks for accepting a plurality of headphone/earphone plugs and/or a plurality of bluetooth devices in order to operate simultaneously the said mobile phone in said different communication networks is presented, and a plurality of incoming and / or outgoing calls can be communicated simultaneously with the said respective simcards. A modified simcard having a reduced format is used, such that less space is used when a plurality of said modified simcards are inserted in the modified simsockets of the mobile phone. The mobile phone employs means to provide a conference of voice signals in order to simultaneously enable more than one persons to participate in the communication when using said mobile phone. Said conference can be included in the mobile phone or can alternatively be incorporated in an external adapter connected to said mobile phone, wherein a plurality of headsets can be connected to said adapter and / or the plurality of bluetooth headsets can transreceive the signals with the said mobile phone. In order to incorporate this principle there is a need for technological changes in the existing mobile phone. The entire circuitry of the known mobile phone is changed in order to accommodate utilization of a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards, a plurality of headphone/earphone jacks for accepting a plurality of headphone/earphone plugs and / or a plurality of bluetooth devices in order to operate simultaneously the said mobile phone in said different communication networks is presented, and a plurality of incoming and / or outgoing calls can be communicated simultaneously with the said respective simcards. The facility for fitting a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards in order to operate simultaneously the

said mobile phone in said different communication networks by providing suitable transreceivers sections in the mobile phone.

It is the primary object of invention to invent a mobile phone is to be incorporated with a provision for a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards, a plurality of headphone/earphone jacks for accepting a plurality of headphone/earphone plugs and/or a plurality of bluetooth devices in order to operate simultaneously the said mobile phone in said different communication networks is presented, and a plurality of incoming and / or outgoing calls can be communicated simultaneously with the said respective simcards.

The specialty of the invention is a mobile phone is to be incorporated with a provision for a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards, a plurality of headphone/earphone jacks for accepting a plurality of headphone/earphone plugs and/or a plurality of bluetooth devices in order to operate simultaneously the said mobile phone in said different communication networks is presented, and a plurality of incoming and / or outgoing calls can be communicated simultaneously with the said respective simcards.

THE MAIN FEATURES OF THIS SYSTEM IS ,

- 1) To contact without delay (when tower is provided).
- 2) To save money since the schemes vary (Incoming is free or incoming is Charged , outgoing is charged for a normal rate or outgoing is charged for high rate).

ADVANTAGES OF FACILITY FOR FITTING A PLURALITY OF SIMCARD SOCKETS WHEN COMPARING WITH ONE SIMCARD SOCKET IN A MOBILE PHONE.

1) To save money since schemes vary from one mobile service provider to another mobile service provider.

2) It can be sent or received from a plurality of mobile service providers at a time.

3) To contact anywhere (state) if a mobile service provider does not have tower in a particular place and another mobile service provider which has tower in that particular place.

4) To communicate without any delay.

5) The manufacturing cost is less when comparing with one simcard socket mobile phone since the single mobile phone is incorporated with a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards can communicate with a plurality of different communication networks simultaneously. (example : a single mobile phone having facility for fitting a plurality of current simcard and / or modified simcard sockets are having single key pad, battery supply, mobile cover, LCD screen, CPU, buzzer, PCB and so on.

6) Can receive **SMS** (short text messages service) from one mobile tower if the customer contacts another mobile tower.

7) To save time, since can contact more than one mobile tower .

8) Can call from two persons through one mobile service provider and another mobile service provider.

9) Can be sent to SMS through one mobile service provider and at the same time can be received calls from another mobile service provider.

10) A plurality of incoming and / or outgoing calls can be communicated simultaneously with the said respective simcards.

Further objects of the invention will be cleared from the following description.

A mobile phone is to be incorporated with a provision for a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards, a plurality of headphone/earphone jacks for accepting a plurality of headphone/earphone plugs and / or a plurality of bluetooth devices in order to operate simultaneously the said mobile phone in said different communication networks is presented, and a plurality of incoming and / or outgoing calls can be communicated simultaneously with the said respective simcards.

A modified simcard having a reduced format is used, such that less space is used when a plurality of said modified simcards are inserted in the modified simsockets of the mobile phone.

The mobile phone employs means to provide a conference of voice signals in order to simultaneously enable more than one persons to participate in the communication when using said mobile phone. Said conference can be included in the mobile phone or can alternatively be incorporated in an external adapter connected to said mobile phone, wherein a plurality of headsets can be connected to said adapter and / or the plurality of bluetooth headsets can transceive the signals with the said mobile phone.

A mobile phone having provision for incorporation of a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards, a plurality of headphone/earphone jacks for accepting a plurality of headphone/earphone plugs and / or a plurality of bluetooth devices in order to operate simultaneously the said mobile phone in said different communication networks wherein the circuitry of the mobile phone is modified so as to accommodate any number of mobile phones having provision for incorporation of plurality of simcards.

A mobile phone having provision for incorporation of a plurality of current simcards and / or modified simcards, a plurality of current simsockets and / or modified simsockets for accepting a plurality of current simcards and / or modified simcards wherein signals can be communicated among different mobile communication networks simultaneously without any delay.

Now the invention is clear from the following description. The nature of the invention and the manner in which it is to be performed clearly and fully described in the following pages of description.

The salient features of the invention is described in detail with reference to various figures showing essential aspects of the invention. Each figure of the drawing illustrates certain features which are as follow,

Fig.1 shows the mobile phone can be used to send and / or receive signals with "A" and "B" mobile service providers at a time without any delay.

Fig.2 illustrates that the area in which the mobile service providers are placed in various states in India.

Fig.3 shows the details of the pin of simcards.

Fig.4, 5 & 6 shows the circuitry of the system having two simcards and plurality of simcards.

Fig.7 shows the construction details of simcard (7.a) and simsocket (7.b) known in the art and the modified simcard (7.e) and simsocket (7.f) according to this invention. This figure also shows the bed (7.c) and tray (7.d) of the simsocket.

Fig.8 shows in detail provisions for fitting any number of standardised or current simcards according to invention.

Fig.9 & 10 shows in detail the provision for fitting the modified simcards according to invention.

Fig.11 shows in detail the provision for fitting the standardised or current simcards and modified simcards according to invention.

Fig.12 shows the plurality of the earphones/headphones connected to a single plug 12 (a,b), the figure also shows the different modified sockets (external adapter) 12 (c,d,e,f,g,h,i,j,k).

Fig.13 shows the circuit connections of the earphone/headphone plugs.

Let us have an example:

If we take two mobile service providers "A" and "B", the diagram is as shown in the figure (1). The diagram having tower, microwave radio and GSM (Global system for mobile communication) for "A", "B" mobile service providers. In the diagram (1), a mobile phone with two simcards can be used to send and / or receive signals for "A" and "B" mobile service providers simultaneously.

The facility for fitting two simcards can be used to send and / or receive signals from tower of “A” mobile service provider and tower of “B” mobile service provider simultaneously without any delay.

In the future, the mobile companies can manufacture the facility for fitting plurality of simsockets, at that time, and it can possible for modifying the current standardised simcard for the mobile phones which are having plurality of simcards.

From the figure (1), if the user is on line with the mobile service provider “A” with respect to simcard (first), at that time, a person calling through “B” mobile service provider with respect to simcard (second), then a beep sound will indicate and also “B” mobile service provider (phone number) will be displayed on the LCD screen in the mobile phone. Then the user on the line, with simcard (first) can communicate by hearing the voice in the speaker and by sending the voice through the microphone provided in the mobile phone and can simultaneously receive the incoming call from other mobile service provider with respect to simcard (second), by diverting the incoming call through the respective jack and / or bluetooth device provided in the mobile phone. The headphone/earphone plug is connected to the respective jack for communicating the respective incoming call.

For example let us take four states in India like Tamilnadu, Kerala, Karnataka and Andra as shown in the diagram (2). In the diagram, the arrow mark indicates the travelling of person from Tamilnadu to Kerala, Kerala to Andhra Pradesh, Andra Pradesh to Karnataka respectively.

The diagram (2), shows the mobile service providers in Tamilnadu viz BPL, AIRCEL, RPG, AIRTEL, SKYCELL and BSNL. The RPG, SKYCELL, BSNL and AIRTEL are functioning in madras city only. The BPL and AIRCEL are functioning in major cities all over Tamilnadu expect madras. The RPG or BSNL or SKYCELL simcard of a person does not functioning in any part of

Tamilnadu except madras. In India, kerala state has ESCORTS-FIRST PACIFIC, mobile service provider. If a business executive having AIRCEL simcard who travels from Tamilnadu to kerala. The AIRCEL simcard function in Tamilnadu only but not in kerala. But the same Business executive who has two simcard sockets in a mobile phone. It is easy to fit one AIRCEL simcard and another ESCORTS-FIRST PACIFIC simcard. He is able to use the mobile phone from Tamilnadu to Kerala without any delay to contact any person, company and so on. If a person travels through kerala, karnataka and Andra having three simcard sockets and he is able to fit ESCORTS-FIRST PACIFIC, BIRLA AT&T and TATA-BELL CANADA simcards. He is able to travel Kerala, Karnataka, Andra without any delay of mobile communication (can receive the TATA - BELL CANADA tower when he crosses the tower and at the same time he losses the contact from ESCORT- FIRST PACIFIC tower in Kerala when he enters into Andrapradesh and he is able to send the call to the BIRLA AT&T tower when he crosses or enters the tower and at the same time he losses the contact or connection from TATA-BELL CANADA tower in Andrapradesh when he enters into Karnataka). Therefore the person having three simcards is able to transreceive the calls simultaneously without any delay of Communication.

Description of the invention is achieved by two ways with respect to various illustrations are given in this description.

In particular the simcards are connected in parallel. The sim (Subscriber Identity Module) having six pins as shown in the figure (3) . The pin details are as following ,

- 1) CLOCK.
- 2) RESET.
- 3) Vcc.
- 4) I/O (DATA).
- 5) NC (NO CONNECTION).
- 6) GROUND.

The figure 4,5,6 having simcards, sim IC or sim Interface IC, CPU, RF and Antenna (ANT) and it is shown in the figure.

1) The power supply for the sims are the same and therefore the power supply (Vcc) is common to all the sims. The Vcc of individual sims are interconnected before it is fed to the Interface IC as shown in the figure (4,5,6). The pin (6) having ground and ground pin of individual sims are interconnected and it is earthed. The pin (5) having no connection (NC). The clock signal from the individual sims (simcard I, simcard II and so on) are connected to the sim Interface IC seperately (clk 1, clk 2 and so on). Then the Input / Output (I/O) of data and Reset output from the pins 2 & 4 of the simcard I, simcard II and so on are also fed to the sim Interface IC seperately as shown in the figure (4,5,6). Then the signals are fed to the central processing unit (CPU) from the sim Interface IC. The CPU is connected to the transreceivers (RF) through antenna (ANT).

The transreceivers (RF) are designed, suitable for transreceiving plurality of mobile service providers towers simultaneously.

2) The switching circuit can be placed between the sim Interface IC and the CPU (or) the switching circuit also can be a 'chip' (i.e.,) Integrated Circuit device (IC) can be placed between the simcards and CPU. The timing of switching may be milliseconds, nanoseconds and so on (fast switching). By this method of switching among multiple number of simcards, multiple number of mobile service provider towers can be transreceived through RF. Also the switching circuit can be placed between CPU and RF, if necessary and multiple number of mobile service provider towers can transrecieved. But the timing of switching should be same between the switching of RF and simcard.

The function of Reset:

The input of reset signal is used to start and reset the microchips after the power is on and also at any time the user needs to start the process from the beginning. By initiate the reset is to clear the program counter and then start the program from zero address .

Clock:

The input of clock signal is used by the microchips to generate the clock pulses that presents timing and control for internal functions .

Vcc :

Vcc is the power supply which is given to the microchips to operate (or) required to operate the microchips .

When two (or) five simcards are provided in a mobile phone, a user can operate a particular simcard by pressing a key which is provided in the keypad for outgoing calls. Each simcard is given connection to respective keys viz. 1, 2, 3, 4 and 5. These numbers for the keys can be changed. The mobile phone has a plurality of connections for a plurality of simcards.

A provision is provide in the mobile phone to select either a plurality of headphone/earphone jacks or a plurality of bluetooth devices nor a plurality of headphone/earphone jacks and a plurality of bluetooth devices.

When the mobile phone is 'ON', the first incoming and / or outgoing call for any mobile service provider with respect to any simcard, the first incoming and / or outgoing call can be communicated by the speaker and microphone provided in the mobile phone. Another incoming and / or outgoing call for any other mobile service provider with respect to any other simcards, another incoming and / or outgoing call can be communicated simultaneously by diverting the another incoming and / or outgoing call to the respective jacks and/or a plurality of bluetooth devices provided in the mobile phone. During the communication, a provision is

provided to change the communication of first incoming and / or outgoing call to the respective jacks and / or a plurality of bluetooth devices and also the communication of another incoming and / or outgoing call can be changed to the speaker and microphone provided in the mobile phone.

When the mobile phone is ON and the user has not started using it and when the incoming call comes, it is indicated by the buzzer. Also when an another incoming call comes, it can be indicated by the buzzer and by 'Beep' sound also. But while using the mobile phone by user and an another incoming call arrives at that time, it is indicated by a buzzer and it gives room for disturbance as it is noisy. Therefore the mobile phone which has the provision to indicate the another incoming call by buzzer or by beep which is provided in the settings eg : call register, phone setting and so on in the mobile phone. Therefore the user can select either buzzer or beep in the settings for indicating the another incoming call with respect to plurality of simcards provided in the mobile phone.

All the simcards with respective mobile service providers can be displayed on the display screen of the mobile phone. Selected simcard displays the selected mobile service provider on the display screen. For instance when a user is busy with outgoing (or) incoming calls in simcard (first), another incoming call from any other mobile service provider with respect to other four simcards can be indicated by 'Beep' sound as all the simcards are alert. The user, now, on the line with the simcard (first) in mobile phone in operation, can simultaneously receive the incoming call from any other mobile service providers with respect to other four simcards and also can simultaneously contact any other service providers with respect to other four simcards. The respective simcard number and/or mobile service provider is displayed on the screen now. The user on the line, with simcard (first) can communicate by hearing the voice in the speaker and by sending the voice through the microphone provided in the mobile phone and can simultaneously receive the incoming call from any other mobile service providers with respect to other four simcards, by diverting the incoming call through the respective jack and/or

bluetooth device provided in the mobile phone. The headphone/earphone plug is connected to the respective jack for communicating the respective incoming call.

The call for the first simcard can be communicated by the speaker and the microphone provided in the mobile phone and the incoming and / or outgoing call through any other mobile service provider with respect to other four simcards can be communicated simultaneously by diverting the incoming and / or outgoing call to the respective jacks and / or bluetooth devices provided in the mobile phone. Another incoming and / or outgoing call with respect to simcard (second), simcard (third), simcard (four) and simcard (five) can be connected to jack (first), jack (second), jack (third) and jack (four) and / or bluetooth device (first), bluetooth device (second), bluetooth device (third) and bluetooth device (four) provided in the mobile phone. The mobile phone which has the provision for changing the communication of incoming and / or outgoing calls with respective simcard (first), simcard (second), simcard (third), simcard (four) and simcard (five) to any of the jack (first), jack (second), jack (third), jack (four) and / or bluetooth device (first), bluetooth device (second), bluetooth device (third), bluetooth device (four) and the speaker / microphone provided in the mobile phone. Therefore the user can change the communication of call for the simcard (first) to any of the jack (first), jack (second), jack (third), jack (four) and / or bluetooth device (first), bluetooth device (second), bluetooth device (third), bluetooth device (four) and can change the communication of call for the simcard (second) or simcard (third) or simcard (four) or simcard (five) to speaker and microphone provided in the mobile phone.

As mentioned above the simcard preferred at first remains on the display screen till the user changes to another simcard.

Another provision of facility can be arranged to display all the mobile service providers with respective simcards on the display screen at a time.

While operating the mobile phone the user presses a particular key in order to select the mobile service provider with respective simcard and the phone number can be displayed on the particular space provided for that particular mobile service provider and it can also be displayed that phone number with particular service provider on the entire display screen and it can reach its place where facility is arranged to display all the mobile service providers.

When an incoming call from any mobile service provider eg : 'A' with respect to any simcard, then the name of the mobile service provider eg : 'A' with respective simcard and phone number can be displayed on the entire display screen of the mobile phone. When another incoming and / or outgoing call is simultaneously attended from any mobile service provider eg : 'B' with respective simcard, the name of the mobile service provider eg : 'B' with respective simcard and phone number can also be displayed with the name of the mobile service provider eg : 'A' and phone number on the display screen of the mobile phone. After completing the incoming and / or outgoing call with the mobile service provider eg : 'A and B', then all the mobile service providers with respective simcards can be displayed on the display screen at a time in a mobile phone.

When plurality of earphone/headphone jacks are provided in a mobile phone, plurality of users can use all the above mentioned facilities by connecting the plurality of the earphone/headphone plugs to the plurality of earphone/headphone jacks provided in the mobile phone.

Also when plurality of provisions for number of separate headphone/earphone sections are provided in the jacks with respective simcards (with respective mobile service providers) is arranged, a plurality of users can use separately the call for the respective simcards by connecting a plurality of headphone/earphone plugs to the plurality of headphone/earphone jacks provided in the mobile phone and also a plurality of users can simultaneously communicate a plurality of incoming and / or outgoing calls by connecting a plurality of headphone/earphone plugs to the plurality of headphone/earphone jacks with the

respective simcards provided in the mobile phone. And conference is possible by pressing a key eg: '0' and their all mobile headphone/earphone jacks connections are interconnected by switches and thereby conference of users is achieved.

When plurality of bluetooth devices are provided in a mobile phone, plurality of users can use all the above mentioned facilities by activating the plurality of bluetooth devices provided in the mobile phone.

Also when plurality of provisions for number of separate voice call sections are provided in the bluetooth devices with respective simcards (with respective mobile service providers) is arranged, a plurality of users can use separately the call for the respective simcards by activating a plurality of bluetooth devices provided in the mobile phone and also a plurality of users can simultaneously communicate a plurality of incoming and / or outgoing calls by activating a plurality of bluetooth devices with the respective simcards provided in the mobile phone. And conference is possible by pressing a key eg: '0' and their all mobile bluetooth devices connections are interconnected by switches and thereby conference of users is achieved.

A modified simcard having a reduced format is used, such that less space is used when a plurality of said modified simcards are inserted in the modified simsockets of the mobile phone.

DIMENSIONS OF THE STANDARDISED SIMCARD AND SIMSOCKET

It is shown in the diagram (7 (a.b.c.d.)).

Length of the simcard is	2.5 cm.
Breadth of the simcard is	1.5 cm.
Length of the sim contact is	1.4 cm.
Breadth of the sim contact is	1.1 or 1.125 cm.
Length of the tray is	3 cm.
Breadth of the tray is	1.7 cm.

Length of the gold contacts (simsocket) is	1.3 cm.
Breadth of the gold contacts (simsocket) is	0.7 cm.
Length of the bed is	3 cm.
Breadth of the bed is	1.2 cm.
Length of the simsocket is	3 cm.
Breadth of the simsocket is	1.7 cm.

DIMENSIONS OF THE MODIFIED SIMCARD AND SIMSOCKET

It is shown in the diagram (7 (e.f)).

Length of the simcard is	1.5 cm.
Breadth of the simcard is	1.3 cm.
Length of the sim contact is	1.4 cm.
Breadth of the sim contact is	1.1 or 1.125 cm.
Length of the tray is	2 cm.
Breadth of the tray is	1.5 cm.
Length of the gold contacts (simsocket) is	1.3 cm.
Breadth of the gold contacts (simsocket) is	0.7 cm.
Length of the bed is	2 cm.
Breadth of the bed is	1.2 cm.
Length of the simsocket is	2 cm.
Breadth of the simsocket is	1.5 cm.

The mobile phone incorporates a plurality of miniaturized modified simsockets such that modified simcards having a reduced format can be used. Thus less space is used when the plurality of modified simcards are inserted into the simsockets.

The dimensions or format of simsocket are modified and the dimensions or format of simcard also modified with respective dimensions or format of modified simsocket. The different models of modified simsocket are manufactured but the dimensions of modified simsocket is constant for any models of modified simsocket. The dimensions of simsocket and simcard are modified according to my invention which is clearly explained in the dimensions of modified simcard and modified simsocket [it is shown in fig (7 (e,f)]. The modified simcard (reduced format) can easily fit in different models of standardised simsocket in known mobile phone and also fit in modified simsocket. Therefore the modified simcard (reduced format) is a user friendly. A modified simcard which has a reduced format is used, such that less space is used when a plurality of said modified simcards are inserted in the modified simsocket of the mobile phone. The dimension of the simcard is reduced by cutting the plastic material which is combined with the chipset (chipcard) as mentioned in description of dimension of my invention. The electrically conductive contact zone which is provided on the surface of the chipcard or gold plate of chipcard (simcard) is coated with non-conductive material except the portion or contact point in the gold plate of chipset (simcard) which are fit to the gold contacts of the simsocket. The non-conductive material can be any suitable material. The small portion or contact point of the gold plate of the chipset (simcard) is the conductive layer which are fit to the gold contacts of the simsocket. Therefore the user can touch the non-conductive material (can be any suitable material), which is coated on the gold plate, at the time of inserting the simcard into the simsocket. The user cannot be scratched or written on the gold plate as it is coated with non-conductive material in the modified simcard. The plastic material which are used for the simcard should be hardened (i.e.,) the modified simcard [it is shown in fig.7(c)] is designed to be non-bent and unfolded type. Therefore the user cannot bend or fold the modified simcard since the current standardised simcard is a bend or fold or broken type of simcard. The modified simcard cannot be affected by the user, at the time of fitting the simcard into the simsocket. Therefore the modified simcard is a user friendly, and it can be used to reduce the space in a mobile phone (i.e.,) the space of the simsocket is also reduced in the mobile phone.

If a mobile phone has the current or standardised simcards, we can place minimum three simcards and maximum four simcards in a modern mobile phone as shown in the diagram (8).

If a mobile phone has the modified simcards, we can easily place five simcards or above five simcards in a modern mobile phone as shown in the diagram (9,10).

If a mobile phone has the current or standardised simcards and modified simcards, we can easily place four simcards or above four simcards in a modern mobile phone as shown in the diagram (11).

A facility of conference is differently arranged to provide a conference of voice signals when using said mobile phone, said conference can be included in the mobile phone or can alternatively be incorporated in an external adapter connected to said mobile phone, wherein a plurality of headsets can be connected to said adapter and/or the plurality of bluetooth headsets can transceive the signals with the said mobile phone. Said conference can be included in the mobile phone which has inbuilt of a plurality of headphone/earphone jacks can accept a plurality of headphones/earphones plugs. Said conference can be included in the mobile phone which has inbuilt of a plurality of bluetooth devices.

THE FACILITY OF CONFERENCE IS ACHIEVED BY TWO WAYS IN A MOBILE PHONE.

1) A mobile phone has the plurality of headphone/earphone jacks and/or bluetooth devices.

In a mobile phone, having a facility of plurality of headphone/earphone jacks, the users can connect the plurality of headphone/earphone plugs in the provided jacks of the mobile phone. In a mobile phone, having a facility of plurality of bluetooth devices, the users can activating the

plurality of bluetooth devices provided in the mobile phone. A single speaker and microphone section and a plurality of jacks and / or bluetooth devices are provided in the mobile phone. The plurality of jacks and / or bluetooth devices are connected to the plurality of switches which are connected in series among the plurality of jacks and / or bluetooth devices provided in the mobile phone. Plurality of switches which are activated (ON) means plurality of jacks and / or bluetooth devices are interconnected or deactivated (OFF) at a time by pressing a key eg: '0'. Therefore the plurality of users can communicate to a particular mobile service provider through the plurality of jacks and / or bluetooth devices provided in a mobile phone. The plurality of users can communicate to a plurality or selected mobile service provider with respective simcard through the plurality of jacks and / or bluetooth devices provided in a mobile phone. The plurality of users can communicate to a plurality of mobile service providers with respect to plurality of simcards through the plurality of jacks and / or bluetooth devices provided in a mobile phone. Therefore the conference is achieved by a single mobile phone having plurality of headphone/earphone jacks and / or bluetooth devices. The headphones/earphones with wire (cord) or wireless (cordless) headphones/earphones which can be used for said conference.

2) A mobile phone has a single headphone/earphone jack.

A mobile phone has only one earphone jack. The conference is achieved by connecting a plurality of headphone/earphone to a single plug which is shown in figure 12 (a,b). Conference can be achieved by modified socket according to my invention [figures. 12(c) to 12(k)]. Plurality of users can connect their multiple headphones/earphones plugs which are connected to the jacks of the modified sockets for their communication.

Different types of interface sockets (headphone/earphone) are introduced in many mobile phones. The plurality of headphones/earphones are arranged in a single socket (plug) and its circuit diagram is shown in figure 13 (c,d). The circuit diagram of known headphone/earphone is shown in figure 13 (a,b).

Suppose a user having the known single headphone/earphone, then he is able to fit the number of headphones/earphones (more than one) to the modified socket. The modified sockets are manufactured to connect a plurality of headphone/earphone plugs. The various different modified sockets are shown in figure 12 (c,d,e,f,g,h,i,j,k). In the modified socket, the jack of the modified socket is used to connect the plug of the headphone/earphone and the plug of the modified socket is connected to the jack of the mobile phone. The circuit connections are parallel between the jacks which are connected in series to the plugs of the modified socket which is shown in figure 12 (c to k). The circuit connections between speakers and microphones are parallel and is also shown in figure 13 (a,b,c,d). If necessary, amplifying circuits can be chip called IC (Integrated Circuit) can also be used in a plurality of headphones/earphones to communicate clearly. This is the example of the particular models of interfaces (sockets and pins) of the mobile phones. The various mobile phone manufacturer are introducing different new models of mobile phones having different interfaces. The interface (socket and pins) varies from one mobile phone to another. But every mobile phone has interface (socket and pins) facility for headphone/earphone. The pin numbers of speaker and microphone in a headphone/earphone vary from one interface to another interface of different mobile phone. The same method of modified sockets (interfaces) and the circuit diagrams as shown in figure 12 (c,d,e,f,g,h,i,j,k) and figure 13 (c,d) can be applied to all the different models of mobile phones having different types of interfaces (sockets and pins). The circuit connections are same as mentioned earlier which is suitable for implementing for all the different types of interfaces of different models of mobile phones.